
Randomized Intervention Analysis and the Interpretation of Whole-Ecosystem Experiments
Author(s): Stephen R. Carpenter, Thomas M. Frost, Dennis Heisey, Timothy K. Kratz
Source: Ecology, Vol. 70, No. 4 (Aug., 1989), pp. 1142-1152
Published by: Ecological Society of America
Stable URL: http://www.jstor.org/stable/1941382
Accessed: 05/01/2010 17:29

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/action/showPublisher?publisherCode=esa.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

Ecological Society of America is collaborating with JSTOR to digitize, preserve and extend access to Ecology.

http://www.jstor.org

http://www.jstor.org/stable/1941382?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=esa


Ecology, 70(4), 1989, pp. 1142-1152 
© 1989 by the Ecological Society of America 

RANDOMIZED INTERVENTION ANALYSIS AND THE 
INTERPRETATION OF WHOLE-ECOSYSTEM EXPERIMENTS' 

STEPHEN R. CARPENTER, THOMAS M. FROST, DENNIS HEISEY, AND 

TIMOTHY K. KRATZ 
Center for Limnology, University of Wisconsin, Madison, Wisconsin 53706 USA 

Abstract. Randomized intervention analysis (RIA) is used to detect changes in a ma- 
nipulated ecosystem relative to an undisturbed reference system. It requires paired time 
series of data from both ecosystems before and after manipulation. RIA is not affected by 
non-normal errors in data. Monte Carlo simulation indicated that, even when serial au- 
tocorrelation was substantial, the true P value (i.e., from nonautocorrelated data) was 
<.05 when the P value from autocorrelated data was <.01. We applied RIA to data from 
12 lakes (3 manipulated and 9 reference ecosystems) over 3 yr. RIA consistently indicated 
changes after major manipulations and only rarely indicated changes in ecosystems that 
were not manipulated. Less than 3% of the data sets we analyzed had equivocal results 
because of serial autocorrelation. RIA appears to be a reliable method for determining 
whether a nonrandom change has occurred in a manipulated ecosystem. Ecological argu- 
ments must be combined with statistical evidence to determine whether the changes dem- 
onstrated by RIA can be attributed to a specific ecosystem manipulation. 

Key words: ecosystem;, experiment; intervention analysis; lake; manipulation; randomization tests; 
replication; statistics. 

INTRODUCTION 

Whole-ecosystem experimentation has made vital 
contributions to ecology (Hasler 1964, Likens 1985). 
Ecosystem-level experiments have been especially 
valuable when results of smaller scale experiments have 
contradictory implications for ecosystem phenomena 
(Schindler 1988). At the community level, whole-sys- 
tem manipulations of large, mobile predators have re- 
vealed responses at spatial scales much larger than ex- 
perimental enclosures (Carpenter et al. 1987, Schindler 
1987). Ecosystem experiments are properly scaled for 
many important management issues and so are espe- 
cially useful in applied ecology (Magnuson et al. 1984a, 
National Research Council 1986, Frost et al. 1988, 
Kitchell et al. 1988). 

Two analytical challenges arise in the interpretation 
of ecosystem experiments: (1) did the manipulated eco- 
system change following the manipulation? and (2) did 
the manipulation cause the change? (Frost et al. 1988). 
Both questions can be answered by randomized, rep- 
licated experimental designs (Hurlbert 1984, Frost et 
al. 1988). However, replication is rarely possible in 
whole-ecosystem experiments because of limited fund- 
ing, limited access to experimental ecosystems, and 
public health, political or environmental difficulties with 
the necessary manipulations. Moreover, high inter- 
annual and interecosystem variability dictates that large 
numbers of replicates are needed in many cases to 
achieve adequate statistical power. For example, in 
experiments on primary production in lake ecosys- 

'Manuscript received 25 March 1988; revised and accepted 
8 August 1988. 

tems, about five replicate lakes per treatment are nec- 
essary to detect even large manipulation effects (Car- 
penter 1989). Many community properties are even 
more variable than primary production (Carpenter and 
Kitchell 1987, Schindler 1987, 1988) and would re- 
quire even more replicates to detect effects. Problems 
of time-treatment interaction may further increase the 
numbers of replicates needed (Walters et al. 1988). In 
many cases, there will simply not be enough ecosystems 
to achieve adequate replication. For example, two 
prominent experimental lake reserves in North Amer- 
ica, Canada's Experimental Lakes Area and the Uni- 
versity of Notre Dame Environmental Research Cen- 
ter, contain only 46 and 27 lakes, respectively. Given 
the large number of important questions that require 
whole-ecosystem experiments (National Research 
Council 1986, Schindler 1987, 1988), these critical 
studies will rarely, if ever, be adequately replicated. 

As an alternative to replication, whole-ecosystem 
experiments can be used selectively to determine the 
response potential of ecosystems to powerful manip- 
ulations which produce massive, unequivocal re- 
sponses in one system at one time (Kitchell et al. 1988). 
In these unreplicated experiments, experimental and 
reference ecosystems are observed before and after a 
manipulation is applied to the experimental system. 
Replicated small-scale experiments, process studies, and 
models can then be used to determine the mechanisms 
that underlie ecosystem responses (Frost et al. 1988, 
Kitchell et al. 1988). This approach has been used in 
successful ecosystem experiments for nearly 40 yr 
(Hurlbert 1984, Likens 1985, Schindler 1988). Gen- 
erally, ecosystem experiments are designed to evoke 
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massive responses in target variables. However, ques- 
tions often arise about less pronounced but potentially 
important consequences of major manipulations. These 
questions are particularly critical in the search for early 
indicators of change, those subtle responses of ecosys- 
tems that forecast much larger changes to come 
(Schindler 1987, 1988). Novel statistical approaches 
to the detection of change in experimental ecosystems 
are needed to resolve such questions. Here we intro- 
duce and test Randomized Intervention Analysis for 
determining whether change has occurred following 
experimental manipulation of ecosystems. 

RANDOMIZED INTERVENTION ANALYSIS 

Antecedents of randomized intervention analysis 
(RIA) are described by Box and Tiao ( 1975), Edgington 
(1980), and Stewart-Oaten et al. (1986). Box and Tiao 
(1975) present tests to detect nonrandom change in a 
series of observations made before and after manip- 
ulation of a single system. Stewart-Oaten et al. (1986) 
described before-after-control-impact (BACI) analysis, 
in which experimental (impact) and reference (control) 
ecosystems are compared before and after the treat- 
ment of the experimental system. These approaches 
use parametric statistics, and the authors discussed 
many concerns about problems of independence and 
distribution of errors. Mohr (1988) has summarized 
and compared these approaches to intervention ex- 
periments. 

RIA uses randomization to derive an error distri- 
bution from the data itself, so that non-normality does 
not affect the test results (Edgington 1980). This feature 
is a distinct advantage, because temporal trends and 
lagged responses commonly cause non-normal error 
distributions in ecosystem experiments. Also, RIA is 
not affected by heterogeneous variances (unlike some 
alternatives, such as the t test). While RIA is affected 
by autocorrelations in the data, our results show that 
lack of independence among sequential observations 
will not cause equivocal results in many ecosystem 
applications of RIA. 

RIA begins with a series of parallel observations of 
experimental and reference ecosystems, paired in time, 
spanning periods before and after a manipulation (Fig. 
1). A time series of interecosystem differences is then 
calculated, and from these are calculated mean values 
for the premanipulation and postmanipulation differ- 
ences, D(PRE) and D(POST), respectively. The abso- 
lute value of the difference between D(PRE) and 
D(POST) is the test statistic. Its distribution is esti- 
mated by random permutations of the sequence of in- 
terecosystem differences. 

The null hypothesis assumes Nature assigns inter- 
ecosystem differences to pre- or posttreatment at ran- 
dom, hence the term randomization. More precisely, 
the null model states that all possible permutations of 
the data have an equal probability of being observed. 
Since we can compute I D(PRE) -D(POST) [ for each 

oREFERENCE * EXPERIMENTAL 

o E 

o 

a- 

0 

0 

0 

8- 

4- 

0 

+3- 

0- 

-3-- 

0 

0 

0 
8° 

0* .10 · 
0-· 

I I I I 
EXPERIMENTAL 

* * 

0 
- 0 

* D(PRE) 
0 

I 0 

o *0 0 
Io 00 * 

0 0· I. oo 8 

** 

0 
00 

00 o 

e 
o, 
o0 0 0 o.. 

-REFERENCE 
0 

I ** D(POST) 
I 

I 0 * 

, -. 00 0; 
**44 - 0 0 0* 

I so 0 

-*** · 
I dlD 

0 

III Alill I I 

JJA 'J' A' J'JJJAAI 
1984 1985 1986 

MANIPULATION 

CALCULATE I D(PRE)-D(POST)I 
FOR 1000 RANDOM 

PERMUTATIONS OF EXP-REF 

20- 

I- 
z 
LU 
C> 

LI 
13_ 

10- 

0 

ACTUAL ID(PRE)-D(POST)| 

TAIL AREA 
=4.6% 

1 g 1 * I I- 

0 
' l 

2 

FIG. 1. Calculations for Randomized Intervention Anal- 
ysis. From the paired data from both experimental and ref- 
erence ecosystems before and after manipulation, intersystem 
differences (EXP - REF) are calculated. Mean intersystem 
differences before and after manipulation, D(PRE) and 
D(POST), respectively, are then calculated. Random per- 
mutation of the intersystem differences yields the distribution 
of the the test statistic, I D(PRE) - D(POST) |. Data in ex- 
ample from lakes Peter (experimental) and Paul (reference). 

of these possible permutations, the distribution of the 
test statistic can, in theory, be determined exactly. Ex- 
act determination is practical if the number of per- 
mutations is relatively small (Green 1977). If the num- 
ber of permutations is large, exact P values may be 
computationally infeasible, in which case P values can 
be approximated by Monte Carlo methods. To do this, 
differences are randomly assigned to times before or 
after the manipulation, regardless of their position in 
the actual sequence. Many such permutations are gen- 
erated, and the resulting frequency distribution of 
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I D(PRE) - D(POST) I is examined. The proportion 
of values of I D(PRE) - D(POST) I that exceeds the 
observed value is the approximate P value. The P value 
indicates the probability of a test statistic as or more 
extreme than that observed, under the null hypothesis. 
If this P value is low, then one concludes that a non- 
random change in the interecosystem difference oc- 
curred following the manipulation. RIA does not in- 
dicate when the change occurred, though this 
information may be evident from the time series of 
observations. 

In a general sense, RIA tests the null hypothesis that 
the same changes or trends occurred in the experi- 
mental and reference ecosystems following the manip- 
ulation. It is critical to note that rejection of this null 
hypothesis does not demonstrate that the manipulation 
caused the change (Box and Tiao 1976, Hurlbert 1984). 
Like any intervention analysis, RIA can only establish 
whether or not a change occurred (Box and Tiao 1976). 
To establish that the manipulation caused the re- 
sponse, one must show beyond reasonable doubt that 
no alternative causes could produce the observed change 
(Hurlbert 1984, Walters et al. 1988). In unreplicated 
ecosystem experiments, determination of causality will 
rest on ecological rather than statistical arguments 
(Hurlbert 1984, Frost et al. 1988). RIA indicates 
whether a change has occurred, and therefore, whether 
or not there is any need to consider is cause. 

The performance of RIA in ecosystem experiments 
must be explored systematically. Given the high tem- 
poral variability of certain ecosystem parameters (Car- 
penter and Kitchell 1987, Kratz et al. 1987, Schindler 
1987, 1988), it is conceivable that RIA could detect a 
high frequency of changes in unmanipulated ecosys- 
tems or, conversely, fail to detect even massive changes 
in manipulated systems. Here we examine the perfor- 
mance of RIA on parallel data from two whole-lake 
experiments and a set of nonmanipulated, long-term 
study lakes, all located within a 30 km radius in the 
Northern Highlands Lake District of Wisconsin. We 
test for (1) the ability of RIA to detect apparent change 
in experimentally manipulated ecosystems and (2) the 
frequency with which RIA detects change in lakes that 
have not been manipulated. The two whole-lake ex- 
periments are the Cascading Trophic Interactions proj- 
ect in which two lakes were subjected to food web 
manipulations and a third was maintained as a refer- 
ence system (Carpenter et al. 1987), and the Little Rock 
Lake Experimental Acidification Project in which a 
lake was separated by a curtain with one basin acidified 
and the other maintained as a reference system (Bre- 
zonik et al. 1986, Watras and Frost 1989). Seven ad- 
ditional, nonmanipulated lakes are elements of the 
North Temperate Lakes Site of the Long-Term Eco- 
logical Research (LTER) Program (Magnuson et al. 
1984b, Kratz et al. 1986). The food web of one LTER 
lake, Sparkling Lake, appears to be changing dramat- 
ically following the inadvertent introduction of an ex- 

otic planktivore (Magnuson and Beckel 1985, McLain 
and Magnuson 1988). 

METHODS 

Statistical procedures 

We determined the effects of sample size and auto- 
correlation on RIA by Monte Carlo simulation. In sim- 
ulations to determine the effects of sample size, N, the 
premanipulation sample consisted of N/2 normally 
distributed random numbers with mean X and stan- 
dard deviation s. The postmanipulation sample con- 
sisted of N/2 normally distributed random numbers 
with mean X + ms, where m is the specified manip- 
ulation effect. 

Simulations to determine the effects of autocorre- 
lation followed a similar procedure except that the se- 
quences of random numbers were autocorrelated. In 
this paper, autocorrelation pertains to the time series 
of interecosystem differences (Fig. 1). Both autore- 
gressive and moving average models were used. 

In the autoregressive model, 

Y(t)= C Y(t - 1) + Z(t) 

where Y(t) is the random variate (with mean zero) at 
time t, C is the autoregression coefficient, and Z(t) is 
a random effect from a normal distribution with mean 
zero and unit variance. The variance of Y is 

S2 = 1/(1 - C2) 

and the autocorrelations are r, = C, r2 = C2, r3 = C3, 

etc., where the subscript denotes the lag (Chatfield 1980). 
We performed calculations for specified values of r,. 

In the moving average model, 

Y(t) =Z(t)- C Z(t- 1) 

where C scales the moving average term, and other 
terms correspond to those in the autoregressive model. 
The variance of Y is 

S2 = 1 + C2 

and only the lag 1 autocorrelation is nonzero (Chatfield 
1980) 

r, -C/(1 + C2). 

We performed calculations for specified values of r,. 
In solving the quadratic equation for C given r, we 
used the root between -1 and + 1. 

In simulated experiments with autoregressive or 
moving average models, a total of 40 autocorrelated 
Ys were generated. The first 20 represented the pre- 
manipulation data. A manipulation effect equal to a 
specified multiple of the standard deviation was added 
to the second set of 20 Ys. These sample sizes were 
similar to those in our 3-yr data sets. We analyzed only 
positive autocorrelations. No cases of negative auto- 
correlation occurred in our data. While positive au- 
tocorrelations are anticonservative (i.e., lead to over- 
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TABLE 1. Manipulated and reference lakes studied. Code for projects: CTI = Cascading Trophic Interactions; LRLEAP = 
Little Rock Lake Experimental Acidification Program; LTER = Long-Term Ecological Research. 

Lake Project Comment 

Manipulated lakes: 
Peter CTI Piscivores removed, planktivores added 
Little Rock Acid LRLEAP Acidified 
Tuesday CTI Piscivores added, planktivores removed 

Reference lakes: 
Allequash LTER 
Big Muskellunge LTER 
Crystal LTER 
Crystal Bog LTER 
Paul CTI 
Little Rock Reference LRLEAP 
Sparkling LTER Exotic planktivore (smelt) invading; for further information, 

see McLain and Magnuson (1988) 
Trout LTER 
Trout Bog LTER 

estimation of P), negative autocorrelations are 
conservative (i.e., lead to underestimation of P) and 
are therefore of less concern. 

Because our limnological data included replicate ref- 
erence ecosystems, we could compare each manipu- 
lated lake with the set of reference lakes by a conven- 
tional two-sample t test. For this analysis, we calculated 
the response of each lake as the postmanipulation mean 
minus the premanipulation mean. These tests, involv- 
ing 4-9 reference lakes, have very low statistical power 
because of no replication in one group (Snedecor and 
Cochran 1967). With 10 lakes, for example, the bal- 
anced design (5 experimental and 5 reference systems) 
has a t statistic 2.4 times larger than that of the design 
with 1 experimental and 9 reference systems, all other 
terms being equal (Snedecor and Cochran 1967). 

The goal of this paper is to examine the performance 
of RIA for the typical application to one experimental 
and one reference ecosystem. In most applications, 
multisystem comparisons such as those we present will 
not be possible and control of experimentwise error 
rates will not be an issue. Therefore, we discuss sig- 
nificance at the nominal level of 5%, rather than at a 
lower level adjusted for simultaneous comparisons. 

Limnological procedures 

We computed RIAs for surface pH, light extinction 
coefficient of the epilimnion, epilimnetic chlorophyll, 
and densities of three zooplankton taxa (Keratella 
cochlearis, all Daphnia species combined, and all cala- 
noid copepods combined). Here we emphasize three 
variables (pH, chlorophyll concentration, and Daphnia 
density) which represent the diversity of patterns we 
observed. The ability of RIA to detect changes directly 
related to manipulation was examined using pH, which 
exhibits modest temporal variability and was affected 
directly by the acidification of the experimental basin 
of Little Rock Lake (Brezonik et al. 1986). Chlorophyll 
concentration is a variable that is affected indirectly 
by both acidification (Schindler et al. 1985) and fish 

manipulation (Carpenter et al. 1987). It exhibits greater 
temporal variability than pH, but is much less variable 
than the concentrations of individual plankton taxa. 
Light extinction, like chlorophyll, is affected indirectly 
by manipulations but is even more variable. Daphnia 
density is also affected indirectly by acidification and 
fish manipulation, and is among the most variable lim- 
nological parameters. To check for effects oftaxonomic 
resolution, we also examined a species-level variable 
(Keratella cochlearis) and a suprageneric variable (total 
calanoid copepods). 

Overall, we analyzed data from 12 lakes for 1984- 
1986 (Table 1). Three lakes were subjected to whole- 
system manipulations in the last week of May 1985. 
Little Rock Lake was divided by a neoprene curtain 
in 1984 and acidified by the addition of concentrated 
H0SO4 on 29 May 1985. Acidification continued to 
maintain pH 5.6 during the ice-free periods of 1985 
and 1986. Peter and Tuesday lakes underwent recip- 
rocal fish manipulations during 23-31 May 1985. 
Ninety percent of the piscivore biomass of Peter Lake 
was transferred to Tuesday Lake, and 90% of the plank- 
tivore biomass of Tuesday Lake was transferred to 
Peter Lake (Carpenter et al. 1987). For some param- 
eters, data were not available for every interlake com- 
parison. 

The two basins of Little Rock Lake and the LTER 
lakes (Allequash, Big Muskellunge, Crystal, Crystal Bog, 
Sparkling, Trout, and Trout Bog) were sampled and 
analyzed with the same procedures, except for zoo- 
plankton densities. Each basin or lake was sampled at 
a central, deep water station every 2 wk during the ice- 
free season and - every 5 wk throughout the rest of 
the year. Both basins of Little Rock Lake were sampled 
on the same day and in alternate weeks to the LTER 
lakes. Sample order for the LTER lakes was random 
within a week. Reported pH values are for samples not 
equilibrated with the atmosphere (Kratz et al. 1987). 
Epilimnetic light extinction was calculated from irra- 
diance measurements made at 1-m intervals through- 
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Effect of Number 
of Samples 

N N=10 

0 1 2 3 
MANIPULATION RESPONSE 

(MULTIPLE OF s) 
FIG. 2. Effects of sample size (N) on RIA. P value from 

RIA is plotted vs. manipulation response as a multiple of the 
standard deviation(s). Curves are shown for series of 10, 40, 
and 80 samples. In all cases the manipulation was applied at 
the midpoint of the time series. Error bars are 95% confidence 
intervals based on 36 simulated experiments. 

out the epilimnion with a flat PAR sensor and a ref- 
erence deck cell. Epilimnetic chlorophyll was calculated 
as the mean of 2-6 samples taken with a peristaltic 
pump at different depths above the thermocline. Sam- 
ples were filtered in-line, extracted with acetone-DMSO, 
and chlorophyll, corrected for pheopigments, was de- 
termined spectrophotometrically. In Little Rock Lake, 
zooplankton were sampled from three depths using a 
Schindler-Patalas trap (Frost and Montz 1988). Den- 
sities are reported as a simple average or as a volume- 
weighted average determined by adjusting for the lake 
volume represented by each depth stratum. In the LTER 
lakes, zooplankton samples were collected with a 
Schindler-Patalas trap but were pooled prior to count- 
ing, with individual samples weighted to represent the 
volume of their depth stratum. 

Lakes involved in the Cascading Trophic Interac- 
tions project (Paul, Peter, and Tuesday lakes) were 
sampled weekly from mid-May through mid-Septem- 
ber each year (Carpenter et al. 1987). Paul, Peter, and 
Tuesday lakes were sampled on Monday, Tuesday, and 
Wednesday of each week, respectively, at central deep 
water stations. Surface pH was determined after stir- 
ring samples for at least 10 min to equilibrate them 
with the atmosphere. The epilimnetic light extinction 
coefficient was calculated from irradiance measure- 
ments at 6-10 depths obtained with a spherical quan- 
tum sensor and reference deck cell. Epilimnetic chlo- 

rophyll was calculated as the mean of 3 or 4 samples 
taken by van Dorn bottle from different depths above 

the thermocline. Samples were filtered, extracted in 
methanol, and chlorophyll concentration, corrected for 
pheopigments, was determined fluorometrically. Zoo- 
plankton densities were determined by enumerating 
animals collected in vertical net hauls. Filtering effi- 
ciencies of the net were determined by comparing ver- 
tical hauls with profiles obtained by Schindler-Patalas 
traps (Carpenter et al. 1987). 

RESULTS 

Simulations 

When only 10 samples were obtained in simulated 
experiments, manipulation effects of 2 standard de- 
viations or less were not generally detected by RIA at 
the 5% level (Fig. 2). In cases with 40 samples, com- 
parable to our data sets, manipulation effects of 1 stan- 
dard deviation or more were consistently detected by 
RIA. Doubling the sample size to 80 produced a small 
increase in sensitivity. 

Serial autocorrelation in the time series of inter- 
ecosystem differences causes RIA to underestimate the 
true P value (Fig. 3). We present results for r, values 
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FIG. 3. Effects of autocorrelation on RIA. P value from 
RIA is plotted vs. manipulation response as a multiple of the 
standard deviation. Curves are shown for independent and 
autocorrelated time series calculated with both autoregressive 
(upper panel) and moving average (lower panel) models. Error 
bars are 95% confidence intervals based on 36 simulated ex- 
periments. 

P 
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TABLE 2. P values from RIA of surface pH from nine reference lakes and the acidified half of Little Rock Lake. Underline 
denotes P < .05. 

Lake 1 2 3 4 5 6 7 8 9 10 

1. Allequash 
2. Big Muskellunge 0.513 
3. Crystal 0.495 0.332 ... 
4. Crystal Bog 0.270 0.719 0.586 
5. Paul 0.945 0.774 0.065 0.715 
6. Little Rock acidified 0.002 0.000 0.000 0.000 0.002 
7. Little Rock reference 0.733 0.589 0.346 0.139 0.621 0.000 
8. Sparkling 0.867 0.734 0.267 0.523 0.733 0.000 0.665 
9. Trout 0.628 1.000 0.807 0.461 0.906 0.000 0.624 0.390 

10. Trout Bog 0.497 0.105 0.112 0.000 0.417 0.000 0.074 0.045 0.433 

near the maximum observed in our data sets. In all of 
the autocorrelated simulations examined, the true P 
value was <.05 if the P value from RIA was less than 
.01. Therefore, as a conservative rule of thumb, the P 
value from RIA should be <.01 to reject the null hy- 
pothesis when the time series is autocorrelated. If the 
time series is autocorrelated and P from RIA is between 
.01 and .05, then the results are equivocal. 

Limnological data 

RIA of surface pH data consistently indicated changes 
after the acidification of Little Rock Lake (Table 2). 
Of the 36 comparisons involving reference lakes, only 
two (5.6%) were significant at the 5% level. Both sig- 
nificant comparisons of reference lakes involved Trout 
Bog. 

RIA of epilimnetic chlorophyll consistently indicat- 
ed changes after fish manipulation in Tuesday Lake 
(Table 3), where piscivore addition caused fivefold re- 
ductions in algal biomass that were sustained through 
1985-1987 (Carpenter et al. 1987, Carpenter and 
Kitchell 1988). The fish manipulation in Peter Lake 
caused 10-fold increases in algal biomass that persisted 
only z 2 mo in 1985 (Carpenter et al. 1987). This tran- 
sient response produced significant RIAs in compari- 
sons with only two reference lakes, Paul and Little 
Rock. No response was evident for chlorophyll in Little 

Rock Lake. Of the 21 comparisons involving reference 

lakes, only one (4.8%) was significant at the 5% level. 

Because the mean is more sensitive to extreme ob- 
servations than the median, we tested the effects of 

substituting medians for means in the calculation of 

D(PRE) and D(POST) for the chlorophyll data (Table 
3). On the basis of significant results at the 5% level, 
medians and means gave almost identical results. As 
expected, P values were usually larger when medians 
were used (for example, see results for Tuesday Lake 
below). However, that was not always the case. Two 
(9.6%) of the comparisons involving reference lakes 
were significant at the 5% level when medians were 
used. 

Most of the significant RIAs for Daphnia density 
involved manipulated lakes (Table 4), consistent with 
the high sensitivity of Daphnia to planktivorous fishes 
(Carpenter et al. 1987) and acidification (Schindler et 
al. 1985). The consistently significant RIAs involving 
Sparkling Lake are, perhaps, moot. An exotic plank- 
tivore (rainbow smelt, Osmerus mordax) invaded 
Sparkling Lake in 1982 (McLain and Magnuson 1988). 
Rapid expansion of the smelt population appears to 
be causing changes in Daphnia density comparable to 
those produced by deliberate fish manipulations in Pe- 
ter and Tuesday lakes (McLain and Magnuson 1988). 

Conventional t tests detected significant manipula- 
tion effects in Little Rock (pH), Peter (extinction coef- 

TABLE 3. P values from RIA of epilimnetic chlorophyll concentration from three experimental lakes (*) and seven reference 
lakes. Above diagonal: RIA based on means; below diagonal, RIA based on medians. Underline denotes P < .05. 

Lake 1 2 3 4 5 6 7 8 9 10 

1. Allequash ... 0.992 0.993 0.794 0.680 0.833 0.250 0.803 0.329 0.000 
2. Big Muskellunge 0.233 ... 0.215 0.875 0.601 0.261 0.260 0.353 0.022 0.000 
3. Crystal 0.292 0.287 ... 0.624 0.576 0.641 0.596 0.931 0.143 0.000 
4. Little Rock acidified* 0.513 0.537 0.143 ... 0.211 0.906 0.006 0.713 0.002 0.000 
5. Little Rock reference 0.679 0.665 0.416 0.683 ... 0.386 0.037 0.276 0.181 0.000 
6. Paul 0.770 0.030 0.150 0.411 0.490 ... 0.032 0.484 1.000 0.000 
7. Peter* 0.692 0.279 0.734 0.050 0.200 0.401 ... 0.360 0.993 0.000 
8. Sparkling 0.387 0.214 0.237 0.335 0.709 0.564 0.614 0.512 0.000 
9. Trout 0.416 0.035 0.298 0.012 0.143 0.615 0.696 0.709 ... 0.000 

10. Tuesday* 0.006 0.000 0.000 0.004 0.046 0.000 0.000 0.000 0.000 ... 
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TABLE 4. P values from RIA of Daphnia density from three experimental lakes (*) and five reference lakes.t Underline 
denotes P < .05. 

Lake 1 2 3 4 5 6 7 8 

1. Crystal ... 0.464 0.374 
2. Little Rock acidified* 0.331 0.001 0.018 0.065 0.003 0.048 0.618 
3. Little Rock reference 0.352 0.000 ... 0.008 0.128 0.005 0.865 0.246 
4. Paul 0.020 0.028 0.207 
5. Peter* 0.900 0.063 0.596 0.015 
6. Sparkling 0.000 0.008 0.000 0.009 0.000 
7. Trout 0.546 0.005 0.785 0.116 0.595 0.019 
8. Tuesday* 0.114 0.517 0.280 0.000 0.001 0.009 0.413 

t Little Rock Lake densities were computed by two methods: simple averaging (below diagonal) as in Paul, Peter, and 
Tuesday lakes, and hypsometrically-weighted averaging (above diagonal) as in Crystal, Sparkling, and Trout lakes. 

ficient, total calanoid copepods), and Tuesday (chlo- 
rophyll concentration, total Daphnia) lakes (Table 5). 
However, because the power of this test is very low, 
lack of significance does not demonstrate lack of a 

manipulation effect. In two cases with significant t tests, 
all RIAs were significant (pH in Little Rock Lake, chlo- 

rophyll concentration in Tuesday Lake). In the other 

cases, RIA detected differences between the manipu- 
lated lake and only some of the reference lakes. In many 
of these cases, graphs of the time series suggested that 
any change in the manipulated lake was paralleled by 
changes in some reference lakes. For example, declin- 
ing chlorophyll concentration in the acidified basin of 
Little Rock Lake and increasing chlorophyll in Peter 
Lake corresponded to similar changes in certain ref- 
erence lakes. In a few cases, no response of the ma- 
nipulated lake would have been expected. For example, 
Tuesday Lake is stained and its extinction coefficient 

is very insensitive to changes in chlorophyll concen- 
tration (Elser 1987). 

Overall, few significant RIAs occurred in compari- 
sons of nonmanipulated lakes (14 of 108, or 12.9%, 
Table 5). Four of these involved differences in Daphnia 
density between Sparkling Lake and the other non- 
manipulated lakes (Table 4), which was associated with 
the smelt invasion of Sparkling Lake (McLain and 
Magnuson 1988). Discounting these cases, only 9.6% 
(10/104) of the comparisons involving reference lakes 
produced significant RIAs. 

The incidence of significant autocorrelations in time 
series with significant RIAs was about the same as in 
the complete set of time series (Table 5). Overall, 30. 1% 
of the time series (66/219) were autocorrelated. Of the 
time series with significant RIAs 32.9% (23/70) were 
autocorrelated. Autocorrelation was especially fre- 
quent in the pH time series, and especially infrequent 

TABLE 5. Summary of RIA results and incidence of significant autocorrelations at lag 1 (r,) for the interlake comparisons 
we examined. 

Significant RIAs/total RIAs Significant ris* 
Manipulated Nonmanip. 

Variable Lake lakes lakes Per test Per sig. RIA 

pH *Little Rock (9/9) 2/36 20/45 5/11 
Extinction coefficient Little Rock (4/9) 2/21 4/45 0/10 

*Peter (4/9) 
Tuesday (0/9) 

Chlorophyll concentration Little Rock (3/9) 1/21 9/45 2/14 
Peter (4/9) 

*Tuesday (9/9) 
Keratella cochlearis Little Rock (1/7) 4/10 13/28 4/9 

Peter (2/7) 
Tuesday (2/7) 

Daphnia spp. Little Rock (4/7) 5/10 9/28 5/15 
Peter (3/7) 

*Tuesday (3/7) 
Total calanoid copepods Little Rock (5/7) 0/10 11/28 7/11 

*Peter (4/7) 
Tuesday (2/7) 

* Numbers of significant autocorrelations are tabulated per number of comparisons as well as per comparison with significant 
RIA. 

t Lakes with significant changes by t test against all nonmanipulated lakes. No significant t tests occurred for nonmanipulated 
lakes. 
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in the time series for extinction coefficients and chlo- 
rophyll concentration. Autocorrelation was only rarely 
associated with marginal P values. Overall, only 2.7% 
(6/219) of time series had significant autocorrelations 
and P values between .01 and .05. 

DISCUSSION 

RIA appears to be a reliable means of detecting 
changes in time series from whole-ecosystem experi- 
ments. Differences following ecosystem manipulations 
were indicated regularly, while differences were not 
common in analyses of reference ecosystems. RIA was 
especially helpful when changes due to manipulation 
were similar in magnitude to the short-term variability 
of the time series and visual judgments were therefore 
difficult. The power of the test increases slowly with 
increasing sample size when time series contain more 
than -40 observations. Our analyses identified three 
areas for caution in the application of RIA: pairing of 
sample dates, autocorrelations in the time series of 
intersystem differences, and timing and duration of 
responses. In many cases, the latter two problems can 
be resolved by inspection of the time series of both 
ecosystems and their differences. 

Pairing sample dates 

In general, samples for RIA should be paired in time 
as closely as possible. When samples are not closely 
paired, possible effects of the pairing method on the 
results should be considered. 

We found one example in which the method of pair- 
ing sample dates affected the results (Fig. 4). Little Rock 
Lake is sampled within 6 d of the previous week's 
LTER samples, and within 11 d of the subsequent 
week's LTER samples. Therefore, in Tables 1-3 we 
paired Little Rock samples with the previous week's 
LTER samples, their nearest neighbors in time. In rare 
cases, very different results arose when Little Rock 
sample were paired with the subsequent week's LTER 
samples. Extinction coefficients in Big Muskellunge 
Lake and the acidified basin of Little Rock Lake pro- 
vide the most dramatic example: P = .008 for pairing 
with previous (nearest) samples, and P = .753 for pair- 
ing with subsequent samples (Fig. 4). Neither pairing 
method shows large changes, and the sensitivity of the 
results to the pairing methods suggests that these results 
are equivocal. Big Muskellunge Lake is much larger 
than the acidified basin of Little Rock Lake, and at- 
tendant differences in heat budget and phenology of 
the plankton may account for the sensitivity of these 
results to the time lag between samples. 

A4 utocorrelations 

Positive autocorrelation in the time series of inter- 
ecosystem differences causes RIA to underestimate the 
true P value (Fig. 3). A conservative correction for this 
problem is to require P < .01 instead of the nominal 
value of .05 when significant autocorrelation exists. 

This rule of thumb would lead to correct interpreta- 
tions of even the most severely autocorrelated data sets 
in our sample. We observed no rl values >0.5. If r, 
exceeds 0.5, effects on RIA can be estimated by Monte 
Carlo analysis of the autoregressive model described 
in the Methods. 

Autocorrelation was not a severe obstacle to inter- 
pretation of our data. Overall, about one-third of the 
time series were autocorrelated, but in most of these 
cases the P values were so high or low that the results 
of RIA were unequivocal. Autocorrelation caused 
equivocal results in <3% of the cases we examined. 
These observations are consistent with those of Stew- 
art-Oaten et al. (1986), who argued on theoretical 
grounds that autocorrelation may be only a minor 
problem in the analysis of time series of differences 
between experimental and reference ecosystems. 

When autocorrelated time series cause equivocal re- 
sults, intervention analyses that explicitly model the 
serial dependency may be an alternative to RIA (Box 
and Tiao 1976). However, our experiences with this 
method were generally unsatisfactory because of prob- 
lems with nonstationarity and model identification in 
our relatively short time series. 

Timing and duration of responses 

RIA gives no information about the timing or nature 
of any change that it detects. Some changes detected 
by RIA are not consistent with the interpretation that 
the manipulation caused the change. For example, if 
a trend in the interecosystem difference existed before 
the manipulation, or if a change occurred in the ref- 
erence system but not the manipulated system, then a 
significant RIA could occur even if the manipulation 
had no effect. In such cases, misinterpretations can be 
prevented by examining plots of the time series for 
each ecosystem and their difference. 

A less obvious limitation of RIA is its inability to 
detect transient effects that span - 10 or fewer sampling 
intervals. In unreplicated experiments, such brief re- 
sponses will be difficult to evaluate by any statistical 
technique. 

We found an informative example in which the RIA 
was significant even though no manipulation effect was 
evident. Chlorophyll concentrations in Big Muskel- 
lunge Lake and Trout Lake show weak but opposite 
trends which translated into a significant trend in the 
interlake difference (P = .022) even though autocor- 
relation coefficients were small and nonsignificant (Fig. 
5). However, the plots show that this low P value results 
from a gradual, noisy trend rather than an abrupt change 
following the date of manipulation. We analyzed ran- 
dom subsamples of the data to determine the sensitiv- 
ity of the conclusions to particular data points (Fig. 6). 
P values rose and became much more variable when 
subsets of the data were analyzed. In contrast, the chlo- 
rophyll response of Tuesday Lake relative to its nearby 
reference system, Paul Lake, was much more pro- 
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Ecological considerations 

As with any statistical technique, it is critical to con- 
sider the ecological significance of RIA results. We found 
that graphs of both lakes' responses and the interlake 
difference vs. time were indispensable aids in the in- 

terpretation of P values from RIA. 

Ecological criteria provide a further check on low P 
values from RIA of individual response variables. Eco- 

system hypotheses usually predict concomitant changes 
in a series of variables. If an experiment is associated 
with changes in only one of these several variables, 
then it is unlikely that the postulated mechanism caused 
the change. 

We recommend that RIA be used for initial analysis 
of data from ecosystem experiments with unreplicated 
treatments to determine whether or not a change has 
occurred. If no change is indicated, then RIA provides 
no evidence for an effect of the manipulation. Of course, 
statistically nonsignificant results may be biologically 
significant, if the number of observations is too low to 
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FIG. 6. Rarefaction of chlorophyll interlake differences be- 
tween Big Muskellunge and Trout lakes and between Tuesday 
and Paul lakes. For subsamples of 25% and 50% of the data, 
error bars are 95% confidence limits based on 10 randomly 
chosen subsets. For 100% of the data, error bars are 95% 
confidence limits for binomial proportions. 

detect the change. On the other hand, if RIA yields a 
low P value then a change has occurred which may 
have been caused by the manipulation. Time series 
plots for both experimental and reference ecosystems 
as well as the intersystem difference are valuable ad- 
juncts to RIA and necessary for the ecological inter- 
pretations that must ultimately be used for evaluating 
unreplicated whole-ecosystem experiments. 
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